Skip to main content

Spring 2015

Spring 2015 Team 1 GesturTech
Spring 2015 Team 2 Bright Communications
Spring 2015 Team 3 Team H2O
Spring 2015 Team 4 UH2O
Spring2015_Team1
Team 1: GesturTech
Spring2015_Team2
Team 2: Bright Communications
Spring2015_Team3
Team 3: Team H2O
Spring2015_Team4
Team 4: UH2O
previous arrow
next arrow

GesturTech: Enhancing Professional Presentations using Technology

Fluid progression of professional oral presentations is often interrupted by hand-bound controllers needing operation. Constantly, presenters are required to manipulate a computer to progress through a presentation. This is done by using a hand-bound input device such as a mouse or keyboard. As of recently presenting has become more convenient thanks to remote clickers and pointers. However, this method still requires the presenter’s hand to be bound to the input device adding another form of inconvenience. Experts at SOAP Presentations out of Sao Paulo, Brazil have conducted research on personal presentation mistakes. Their research has shown that amongst the most common mistakes made by individuals is their body language and limitations of movement.

To deliver this functionality a combination of speed and positioning sensors will allow the user to communication his/her gesture to any remote controlled device. The technology will be wearable and self-powered. With said wearable user interface and wireless communication, the user will be able to use their arm virtually as an input device for presentation navigation. This device targets elimination of disruption caused by having to “pause-and-click” through a presentation. Future considerations for the applications of this device range from PC control to drone navigation.

Bright Communications

Internet consumption is exponentially growing with the rise of video streaming and the “Internet of Everything” (IoE). The growing demand of bandwidth such as Ultra HD video is quickly outpacing improvements in wireless technology. Furthermore, high density areas such as concerts and auditoriums still pose a challenge to wireless network engineers to provide high-speed yet reliable coverage. A combination of interference, duplex, and security impact today’s wireless networks.

According to Harald Hass from TED Talks, Visible Light Communication (VLC) provides reliable data transfer that is ten times faster than today’s 802.11n standard. Bright Communications (Li-Fi) aims to function alongside normal Wi-Fi communication. This helps load balance users between the two technologies allowing for seamless access to all users. Bright Communications will allow for reliable high-speed transfers by using your everyday light source, LEDs. Unlike Wi-Fi, Bright Communications is a low power yet efficient solution to the wireless problem by providing full duplex communication. Additionally this solution allows for scalability in not only the number of users but also for various upcoming technologies including vehicle to vehicle communication and improved inflight networking.

Team H2O

Sustainability projects have become common place in public facilities across the U.S.; however many of these lack proper service monitoring systems. Manually monitoring these systems is expensive, time consuming, and often results in a reactive response which can result in downtime for the system. Currently, University of Houston employs four full-time employees working 40-hours per week for the maintenance of EZH2O bottle filling stations. Wireless sustainability efforts can reduce the labor cost of maintenance by 50% creating a weekly savings of $4000. By implementing self-monitoring systems, the University is able to take advantage of resources in a more effective manner.

Our wireless sustainability information and monitoring system will monitor the EZH2O units filter status and number of bottles saved, and create a report to a webserver. The initial scope for this project lies with the University of Houston. The university currently has 68 bottle filling stations spread across the 667 acre campus. This size and space between each station causes a drastic increase in the cost to maintain and service these machines. The wireless sustainability information and monitoring system will generate significant savings in labor and time-required for maintenance.

UH2O Smart Water Fountain

Since the cost of water has increased by more than 60% in Houston since 2000, it is in our best interest to begin implementing economical measures, such as ways to reduce water waste. Traditional drinking fountains produce a considerable amount of waste water, and bottle filling stations still rely on user input to dispense the correct amount. In addition, the filters may need replacement at any time, maintenance crews need to check the filter status of each fountain multiple times a week, adding to their overall cost.

The improvements we plan to make to the refill station include a WiFi shield that will be used for real-time wireless communication, allowing remote monitoring by sending information such as the status of the filter and the bottle count to headquarters. This will also eliminate the need to manually monitor each station thereby reducing labor costs. Another improvement will be to install sensors used to measure the volume of a container to dispense the appropriate amount of water without overflowing or constant monitoring. With these improvements, there is a potential of at least 511 tons of greenhouse gas reduced in one year from 63 refill stations.